
DONALD KNUTH–Computer Literacy Bookshops Interview

December 7th, 1993

Donald E. Knuth, is considered by many to be the world’s pre-eminent computer
scientist. The first three volumes of The Art of Computer Programming, defini-
tive reference works for almost 30 years, earned him the ACM’s Turing Award
in 1974 and the National Medal of Science in 1979. Knuth has also developed
breakthrough applications in computer typesetting (“TEX” and “METAFONT”)
and software development (“WEB”), and has over 100 publications to his credit.

Now Professor Emeritus at Stanford University, Knuth is once again chan-
neling his full energies into writing. Dan Doernberg interviewed him in De-
cember 1993 to see what he’s been doing recently, and what we have to look
forward to.

CLB: You have just-published books on both CWEB and the Stanford GraphBase,
two areas of your own research. Let’s start with CWEB, which integrates C and
TEX to facilitate program documentation.

Knuth: The CWEB system is an add-on to C that makes programming better
than any other method known in the world, by far. I simply have to be honest
and say that it’s the greatest thing that’s there. The CWEB System of Structured
Documentation is the definitive user manual and complete explanation, more
than anybody really needs to know about CWEB.

CLB: You’ve said that CWEB gives an order of magnitude improvement in pro-
grammer productivity—how so?

Knuth: Well, maybe not an order of magnitude, maybe only a factor of two.
People who have used CWEB have noticed that they write better programs,
that the programs are more portable, more easily debugged, more easily main-
tained... and they don’t take as long to write.

CLB: Has CWEB been used just at Stanford, or in industry as well?

Knuth: It’s being used around the world. We’ve had WEB, the original version
(for Pascal) in a variety of systems, and then more and more people started
getting infected by it. TEX was written in WEB. Silvio Levy did the conversion
to CWEB in 1987. It was experimental for a long time, and now I’m just saying

1

“The experiment worked!”. CWEB is much better than WEB, because C is a much
nicer language to work with for system programming and lots of other things.
For anybody who really cares about programming, I have no idea why they
would not prefer this to any other system.

CLB: Easy to use, runs fast, all that good stuff?

Knuth: Right, and it makes you happy after you finish writing a program!

CLB: Even if you write a bad program?!

Knuth: Almost... well... yeah! Jill will tell you, I come out of my office several
times a week saying, “CWEB programming is such fun!” It’s true, I just can’t do
enough of it.

The frame of mind that you’re in when you’re writing a CWEB program is
that much better than the old attitude. You think of yourself as writing for a
human being, explaining to a human being what a computer should do, instead
of thinking of yourself as talking to the computer telling it what to do. You
get your act together better when you’re explaining it to another person. This
approach helps even for a program that you’re going to throw away after an
hour. CWEB is a tool that I recommend using even if you’re writing a program
only for yourself, for your eyes only.

CLB: CWEB seems very close to the structured programming models of the 70s...

Knuth: Right, it’s the next step. With structured programming, there were
some people saying program top-down, and others saying program bottom-up.
With WEB/CWEB you can do parts of it bottom-up and parts of it top-down,
whatever you feel is right for the program, or for the part of the program you’re
in.

The structured programming methodology was great... but the way to
really understand it is not as a cookbook of rules, but as a way to understand
the relation between high-level and low-level views of a program. The way you
do that is by viewing the program as a web, as a bunch of small pieces that are
simple in themselves and that have simple connections to other small pieces.
This way of understanding the complex whole in terms of simple small parts,
and the connections between those parts, is supported by the WEB scheme.

You can create the parts in whatever order is psychologically best for you.
Sometimes you can create them from the bottom up. Bottom-up means that
you know somehow that you probably need a subroutine that will do something,
so you write it now while you’re ready, while you’re psyched for it. With this
bottom- up programming, your pencil gets more powerful every page, because
on page nine you’ve developed more tools that you can use on page ten... your
pencil is stronger.

With top-down programming you start at the beginning and say “I’m going
to do this first and then this, and then this”... but then you have to spell out
what those are—you can wind up gasping for breath a hundred pages later
when you finally figure out how you’re actually going to do those things!

Top-down programming tends to look very nice for the first few pages and
then it becomes a little hard to keep the threads going. Bottom-up program-
ming also tends to look nice for a while, your pencil is more powerful, but

2

that means you can also do more tricky stuff. If you mix the two in a good
psychological way, then it works, even at the end.

I did this with TEX, a very large program: 500+ pages of code in the book
. Throughout that entire program, all those lines of code, there was always one
thing that had to be the next thing I did. I didn’t really have much choice;
each step was based on what I’d done so far. No methodology would teach me
how to write a piece of software like that, if I followed it rigorously. But if I
imagined myself explaining the program to a good competent programmer, all
that this long program was, then there was just this one natural way to do it.
The order in which the code appears in the book is the order in which I wrote
it.

CLB: To what extent did you or do you follow the “holy war” debates about
software engineering methodologies?

Knuth: I didn’t follow every nuance of that work, but I was aware of the
dominant ideas. I didn’t know what the CASE tools were until many years
after other people did. I think it was bad to make too much of a religion out
of it. There was a lot of “political correctness” about how to program in those
days.

There was a similar thing in the mathematics community in the 1920’s,
where people were saying that good mathematicians would have to prove the-
orems a certain way. You weren’t supposed to use certain tools of proof that
some people thought might lead you into paradoxes. It was like trying to do
mathematics with a hand tied behind your back. Similarly, politically correct
structured programming was keeping people from getting good programs done,
when they knew perfectly well what they were doing, just because their ap-
proach didn’t happen to fit with the current idea of correctness. Computer
science is like every other field; it goes in waves of fashion. Some of the trends
are good, but almost every good idea seems to get used in a different way than
it should have been.

For example, take random number generators. People had no theory about
how to generate random numbers for fifteen years. Then somebody proved one
small result about a particular method: if you averaged the serial correlation
over an entire period of a billion numbers, the average would be zero, which
was good. All of a sudden, everybody switched over, they took out all their
old routines and converted to this new method, because it was the only one
that had any theory to it whatsoever. It turned out this was a horrible random
number generator; the theory had not noticed that the average over the first
half was +1 and over the second half was -1! All through history, people have
taken ideas and misunderstood the limitations of them.

CLB: Which method was this?

Knuth: Well, it was called RANDU in most subroutine libraries. It’s been
pretty well purged by now; still, if anybody sees a subroutine named RANDU,
get rid of it!

CLB: Did you integrate WEB with C because so many programmers today are
using it, or do you personally like C and write with it?

Knuth: I think C has a lot of features that are very important. The way
C handles pointers, for example, was a brilliant innovation; it solved a lot of

3

problems that we had before in data structuring and made the programs look
good afterwards. C isn’t the perfect language, no language is, but I think it
has a lot of virtues, and you can avoid the parts you don’t like. I do like C as
a language, especially because it blends in with the operating system (if you’re
using UNIX, for example).

All through my life, I’ve always used the programming language that
blended best with the debugging system and operating system that I’m us-
ing. If I had a better debugger for language X, and if X went well with the
operating system, I would be using that.

An extreme case occurred one year I worked in a lab where the operating
system had been designed by Ned Irons. The system was for one of Cray’s early
machines, and Irons had also written a compiler language called IMP. IMP had
a lot of horrible features. One, it was an extensible language, and everybody in
the lab would keep extending it. A program that worked on Monday wouldn’t
work on Tuesday, and the first thing that you’d do if your program failed was
to check whether the compiled code was OK. The second thing about IMP
was that it was an extremely terse language. For example, where in PASCAL
you would say “IF X > 0 THEN...”, in IMP you say “X+=>”. In other words,
your program was very short. You felt like you were writing elegant programs,
because there were only a few characters, but you couldn’t read them the next
day! Being very terse meant that you couldn’t fathom this bunch of marks on
the page...

CLB: I realize your current emphasis is on “literate programming”, but were
you ever whatsoever attracted to APL as a math-oriented language?

Knuth: That’s another story. APL is for people who have problems to solve
and don’t care too much about efficiency; they want a nice elegant way to state
the solution to their problem, but the solution that they come up with is not
necessarily anything that a computer has an easy job doing. It’s a problem
specification language, but not a system programming language... there is an
APL-WEB.

But I want to say more about IMP. The third thing against it was, if you
made a mistake, the compiler would either get into an infinite loop, or it would
stop on your first error and say “ERROR ERROR ERROR” and quit; you
would have to figure out what the mistake was! It was not a great language or
compiler.

However... it was still my language of choice, because it fit that operating
system perfectly. The arrays would be named in a way that you could easily
see in the debugger, and you could know where the storage was being allocated,
you knew what was going on, and you could actually get your program running
reliably, because IMP blended with the operating system. You couldn’t do that
with any of the other languages. You might be writing with a better language,
but you would get your work done a couple of weeks later, instead of getting
answers. I used IMP.

CLB: Was IMP being used at Stanford?

Knuth: It was at a research lab in Princeton. A year before I came to Stanford,
I worked there on a classified cryptanalysis research project.

CLB: Please tell us about your other new book, The Stanford GraphBase.

4

Knuth: The GraphBase book is for two kinds of people. It has a research
purpose; the people who are working on the study of new algorithms for com-
binatorial problems need a standard set of test data on which to compete with
each other, and for benchmarks. As I was preparing Volume IV of The Art
of Computer Programming, I decided that I would make all the examples and
data that I’m using in that book available to everyone. There was a need for
some standard benchmarks, and everything should be well arranged so that it
is easy to use in thousands of ways. So... I now have a collection of thousands
of standard data sets; anyone in Poland can have exactly the same data as
anyone in California or China. It’s very portable, and can be downloaded from
the Internet.

The second purpose of the GraphBase hook is that it is an example of CWEB
programming— it’s actually 32 examples of CWEB programming. They’re short
programs that illustrate the programming style that I prefer. The examples are
like little essays, little short stories of computer programs, that are perhaps fun
to read.

CLB: What is your current hardware and software environment?

Knuth: I use CWEB for my programming. I use the Emacs editor very heavily,
and I use a great high-level language called METAPOST for drawing technical
illustrations. This is a new language by John Hobby that is going to be released
soon, I think. It’s based on METAFONT. 75% of the code is mine from META-
FONT, but it’s fixed up so that it generates PostScript. I love it.

I also use Mathematica. The people at Maple are trying to convince me
to switch over to Maple, another excellent system. At the moment, I like
Mathematica because you don’t have to type your multiplication signs; you
can say “2X” instead of “2*X”. Also, the Mathematica manual is exceptionally
good.

CLB: You like Wolfram’s writing style?

Knuth: Especially the index... you can easily find your way around that book.
With the first edition, when I had a new problem to solve, I would look in the
index and it would almost always refer me to the right page. There were three
or four times when the word I tried wasn’t there, and I penciled in where to
look when I had this problem next time. In the second edition those had all
been fixed, and I had not reported them to anybody.

CLB: Let me get your quick impressions on a few research areas, and whether
you’ve read or done any work in them. The first is genetic algorithms. How do
you feel about the general concept, that instead of the human determining the
algorithm, you somewhat let the machine have at it...

Knuth: I plan to do a lot of experimenting on this as I get into Volume IV.
There’s genetic breeding, there’s simulated annealing, there are other strategies
that people have developed. I have a method in The Stanford GraphBase book
that I call “stratified greed”. These techniques are all competing for the same
kind of problems, and I want to try a lot of examples; some of them might work
better on one than the other, and I want to get a feel for this. Certain problems
are naturals for neural nets... genetic algorithms are likely to do well on tasks
related to language recognition, and people say also like predicting the stock

5

market or something like that. Somehow the closer a problem is to nature, the
more you expect the genetic algorithm to work, while the closer it is to number
theory or something artificial, the more you expect some other kind of approach
will help. It’s hard to understand the way these methods scale up; on a small
problem they might do terrifically, and then they might break down completely
just when the problem gets a little bit bigger... or it might go the other way.

CLB: It sounds like you have several years of disciplined testing with your data
sets ahead of you.

Knuth: The Stanford GraphBase gives me an unlimited supply of problems
that I and other people can do. I read what other people have claimed about
their methods, but I also try them all myself. The original work I do in The
Art of Computer Programming is to take the methods of two different authors
and analyze method A from the standpoint of author B, and method B from
the standpoint of author A. They have only given their sides of it, so I try to
fill in

CLB: What about object-oriented programming? Is it just a current buzzword,
or does this approach appeal to you?

Knuth: I’ve always thought of programming in that way, but I haven’t used
languages that help enforce the discipline; I’ve always enforced the discipline
myself in other languages. Programming languages can now catch you if you
make a mistake, and they make it easier for you to hide information from one
part of the program to another. In my own programs, with older languages, I
wouldn’t use what I wasn’t supposed to use; I would have to discipline myself to
follow these rules. I could, so I did. There weren’t programs I couldn’t write...
but the new tools do help.

The problem that I have with them today is that... C++ is too complicated.
At the moment, it’s impossible for me to write portable code that I believe would
work on lots of different systems, unless I avoid all exotic features. Whenever
the C++ language designers had two competing ideas as to how they should
solve some problem, they said “OK, we’ll do them both”. So the language is
too baroque for my taste. But each user of C++ has a favorite subset, and
that’s fine. CWEB fully supports C++ as well as C.

CLB: What are your thoughts about chaos theory, fractals, those areas? Their
indeterminateness seems a little discordant with the domains you’ve focused on
in the past.

Knuth: I did some early work with fractals and so on, and I think it’s a great
new abstraction. People can build models that they wouldn’t have thought of
building before, that really match a lot of things in nature that have this char-
acter of looking the same when you change the scale. You know, if you magnify
the coastline, it still looks like a coastline, and a lot of other things have this
property. Nature has recursive algorithms that it uses to generate clouds and
Swiss cheese and things like that. So now we have mathematical techniques for
understanding such processes that go beyond the kind of differential equations
that people used to have in previous centuries. Now we have a brand new tool
to work with, but I’m not very intuitive about such methods. I know the limi-
tations of my own intuition; I can solve some problems well, but I know other

6

people are able to see something right away which takes me a long time... It’s
not my cup of tea.

CLB: To what extent have you ever followed developments in artificial intel-
ligence? The third program you ever wrote was a tic-tac-toe program that
learned from its errors, and Stanford has been one of the leading institutions
for AI research...

Knuth: Well, AI interacts a lot with Volume IV; AI researchers use the combi-
natorial techniques that I’m studying, so there is a lot of literature there that
is quite relevant. My job is to compare the AI literature with what came out
of the electrical engineering community, and other disciplines; each community
has had a slightly different way of approaching the problems. I’m trying to
read these things and take out the jargon and unify the ideas. The hardest ap-
plications and most challenging problems, throughout many years of computer
history, have been in artificial intelligence— AI has been the most fruitful source
of techniques in computer science. It led to many important advances, like data
structures and list processing... artificial intelligence has been a great stimu-
lation. Many of the best paradigms for debugging and for getting software
going, all of the symbolic algebra systems that were built, early studies of com-
puter graphics and computer vision, etc., all had very strong roots in artificial
intelligence.

CLB: So you’re not one of those who deprecates what was done in that area...

Knuth: No, no. What happened is that a lot of people believed that AI was
going to be the panacea. It’s like some company makes only a 15% profit, when
the analysts were predicting 18

CLB: If you were a soon-to-graduate college senior or Ph.D. and you didn’t
have any “baggage”, what kind of research would you want to do? Or would
you even choose research again?

Knuth: I think the most exciting computer research now is partly in robotics,
and partly in applications to biochemistry. Robotics, for example, that’s terrific.
Making devices that actually move around and communicate with each other.
Stanford has a big robotics lab now, and our plan is for a new building that
will have a hundred robots walking the corridors, to stimulate the students.
It’ll be two or three years until we move in to the building. Just seeing robots
there, you’ll think of neat projects. These projects also suggest a lot of good
mathematical and theoretical questions. And high level graphical tools, there’s
a tremendous amount of great stuff in that area too. Yeah, I’d love to do that...
only one life, you know, but...

CLB: Why do you mention biochemistry?

Knuth: There’s millions and millions of unsolved problems. Biology is so digi-
tal, and incredibly complicated, but incredibly useful. The trouble with biology
is that, if you have to work as a biologist, it’s boring. Your experiments take
you three years and then, one night, the electricity goes off and all the things
die! You start over. In computers we can create our own worlds. Biologists
deserve a lot of credit for being able to slug it through.

7

It is hard for me to say confidently that, after fifty more years of explo-
sive growth of computer science, there will still be a lot of fascinating unsolved
problems at peoples’ fingertips, that it won’t be pretty much working on refine-
ments of well-explored things. Maybe all of the simple stuff and the really great
stuff has been discovered. It may not be true, but I can’t predict an unending
growth. I can’t be as confident about computer science as I can about biology.
Biology easily has 500 years of exciting problems to work on, it’s at that level.

CLB: Use of the Internet is exploding right now, with everyone getting on...

Knuth: Some day we are going to try to figure out who is paying for it!

CLB: Do you currently use it? I know you did in the past.

Knuth: I spent fifteen years using electronic mail on the ARPANET and the
Internet. Then, in January 1990, I stopped, because it was taking up too much
of my time to sift through garbage. I don’t have an email address. People trying
to write me unsolicited email messages get a polite note saying “Professor Knuth
has discontinued reading electronic mail; you can write to him at such and such
an address.”

It’s impossible to shut email off! You send a message to somebody, and
they send it back saying “Thank you”, and you say “OK, thanks for thanking
me...”

Email is wonderful for some people, absolutely necessary for their job, and
they can do their work better. I like to say that for people whose role is to be
on top of things, electronic mail is great. But my role is to be on the bottom
of things. I look at ideas and think about them carefully and try to write them
up... I move slowly through things that people have done and try to organize
the material. But I don’t know what is happening this month.

So now I don’t read electronic mail, but I do use it occasionally. Say I’m
taking a trip to Israel and I’ve got to make last minute arrangements. When I
visit another university or research center for a few days, I have to send email
from there. I’ve learned how to use the email facilities in Emacs, but I don’t
want to get good at it.

CLB: You have many interests outside of computing and mathematics—music,
religion, writing. Is music a creative outlet for you, a means of recreation, or a
spiritual outlet?

Knuth: At the moment it’s recreational. I like to have friends come to the
house and play four-hands piano music. If I could do it every week, I would. I
hope to live long enough so that after I’ve finished my life’s work on The Art
of Computer Programming, I might compose some music. Just a dream... it
might be lousy music, of course.

CLB: You have written some compositions already, haven’t you?

Knuth: Yeah, but it was mostly arrangements of other people’s themes. I
did write a short musical comedy when I was in college called “Nebbishland”.
Remember how Nebbishes were all the rage in the late 50s? “Nebbishland” was
only about a ten minute skit, but it was all original music and lyrics.

CLB: Do you have the score somewhere in the attic?

8

Knuth: Yeah... no actually, I think I’ve lost it. I have only part of it. I’m hoping
to come across it. I’m going through my files now and making a computer index
of everything I have in the house.

CLB: Sounds like you don’t have a paperless house!

Knuth: No!

CLB: Have you fiddled with MIDI computer technology for music, or have you
purposely stayed away from it?

Knuth: I have fun with it. I bought a synthesizer for my son last Christmas,
and I played it for hours and hours. I loved it. I had once played on a Kurzweil
synthesizer years ago, at Marvin Minsky’s house, a grand piano imitation. More
recently, a friend went to England for three years and didn’t want to bring his
grand piano him, so he bought a Yamaha with six voices. When I visited his
house, I had a tremendous time for three days going through all of the pieces
I’d learned on the piano, playing them as if they were on vibraphone, or on a
harpsichord, or some other voice. His “piano” has a harpsichord voice, but the
keyboard is pressure-sensitive, so you can play loud and soft, which you can’t
do on a real harpsichord. These synthesizers are great.

CLB: When did you retire from Stanford?

Knuth: This year. I was on leave for two years until I could officially retire.
Unofficially, I retired in 1990, on the same day I gave up email. I announced
my plans three years earlier. I realized that my main goal in life was to finish
The Art of Computer Programming; I had looked ahead and seen that it would
take twenty years of work, full-time. If I continued doing everything else that I
was doing, it was going to be forty or fifty years of work. I was just not getting
anywhere, I was getting further and further behind. So I said, “Enough.”
Naturally, I hate to give up many of these other things that I like doing very
much. But there are some things I didn’t hate giving up, like writing proposals.
I’m very happy to give up those!

CLB: You had to write proposals?? I assumed you were insulated from that
somehow.

Knuth: You’ve got a great sense of humor! I don’t have to do it anymore; but
as a professor, in order to have decent equipment for my grad students, or to
have visitors for active research programs, to publish reports, etc., I needed to
find sponsors. It’s a lot of work begging for money. The System Development
Foundation said they’d give me a million dollars so that I could finish TEX and
get back to The Art of Computer Programming.

CLB: Did you take them up on it?

Knuth: Sure, but it still took many, many years to finish TEX. I decided that
the only way I would be able to finish The Art of Computer Programming is
by going into full-time writing, and being a hermit, and telling people “No.” It
was hard to adjust the first couple of years. Now I feel real efficient, and the
writing is going well. A nice steady state.

I give lectures at Stanford every month or so, when I’m in town, called
“Computer Musings” . I plan to keep this up for twenty years, to give a talk on

9

whatever I find interesting that month, on neat ideas I’ve picked up... I bring
up problems that I can’t solve, so that somebody will do it for me. Now, if I
can’t solve a problem in two hours, I’ve got to give it up and tell somebody else
to work on it; otherwise, I’ll get behind again. As I write the book, I’ve got to
move from topic to topic, and my attention span is maybe three weeks on any
particular topic.

CLB: You’re best known for your writing and research; did you enjoy teaching
and the interaction with students?

Knuth: We had the greatest students in the world. I can still get together with
students through my lecture series, except I don’t know their names anymore.
That’s a problem.

CLB: No student interns?

Knuth: Suppose I give a “Computer Musings” lecture, stating an open problem,
and suppose that a student in the audience solves that problem, writes his thesis
and finishes it in the next two weeks (maybe two and a half), and shows it to
me. Then I’d still be interested in the topic, would still read it, and I’d be glad
to sign his thesis... but that’s the only way. 28 is the total number of Ph.D.
students I’ve had graduate, and that’s probably all that I will have... unless
something happens at high speed through the “Computer Musings”.

CLB: Real-time Ph.D.’s! What changes have you seen in the students coming
into the computer science program over the years?

Knuth: There is a very profound change that I can’t account for. In the 70s,
the majority of our students were very interested in music. The first thing we’d
ask them when they came in was “What instrument do you play?” We had lots
of chamber groups and so on. Now almost none of the students are interested
in music. I don’t know if it’s because a different kind of people are enrolling in
computer science, or because it’s true of all today’s students, or what. If you
ask computer science students now what their hobby is, the chances are most
of them will say “Bicycling”. I recently had one who played a harmonica, but
there were almost no musicians in the group.

CLB: Any changes in the quality of the students?

Knuth: Not the quality... but they don’t know as much about mathematics as
they used to. We have to do more remedial stuff in college, even at a school
like Stanford.

CLB: How about changes in the field itself... with so much progress and so
many more people involved, is computer science today very different than it
was earlier?

Knuth: Well, there’s all the media and the visual things, that’s a lot different
than it was. There’s also the competition; it’s a great deal more difficult now
than it was in my day. When I started, it was so easy to come up with something
new compared to now, when you’ve got thousands and thousands of smart
people all doing great stuff. There might have been ten great Ph.D. theses a
year at one time; there’s just no way to keep up with all the stuff now.

10

No matter what field of computer science you’re in, everyone is finding it
hard to keep up. Every field gets narrower and narrower, since nobody can cover
all the territory anymore. Everybody can choose two small parts of computer
science and learn those two parts; if one person knows parts A and B, another
knows B and C, and another knows C and D, the field remains reasonably well
connected, even as it expands.

CLB: Do you see yourself as one of the last of computer science’s “Renaissance
Men”?

Knuth: I’m not as broad as you might think—I only work on one thing at a
time. I guess I’m a quick study; I can become an instant expert in something.
I’ve been collecting stuff for thirty years so that I can read the literature on
each topic in “batch mode”—not swapping lots of different topics in and out.
I can absorb a subject locally and get good at it for a little while... but then
don’t ask me to do the thing I was doing a few months ago! Also, I have lots
of people helping me correct my mistakes.

CLB: My last question, your least favorite to be asked... what is the current
plan for completing all seven volumes of The Art of Computer Programming?

Knuth: I’m going to have fascicles of about 128 pages coming out twice a year.
We’re gathering four of them before we come out with the first two actually;
we’re going to keep some in the pipeline! Look for the first fascicles in 1995
or 1996; they will be beta-test versions of the real books. I’m thinking I can
finish Volume IV (parts A, B, and C) in the year 2003, Volume V in 2008, then
come out with new editions of Volume I, II, and III, then work on VI and VII...
There will be a “Reader’s Digest” version of volumes I through V.

CLB: What would your career, and life, have been like had you not announced
the 7-volume set?

Knuth: Oh, I didn’t announce it at first. I thought I was writing only one
book. But if I hadn’t done that, I suppose I still would have been doing a lot
of writing. Somehow it seems that all the way through, I’ve enjoyed trying to
explain things. When I was in high school, I was editor of the student paper;
in college I edited a magazine. I’ve always been playing around with words.

11

