$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 으로 작성하는 수식 미세 조정

남수진

KAKAO
sjnam@ktug.kr
2013년 2월 18일

아름다운 $T_{E X}$ 수식

Q\&A Session with Prof. Donald Knuth, TUG'95 Annual Meeting

$$
x^{n}+y^{n}=z^{n} \quad \ldots \text { NOT! }
$$

The paper came out in the Annals of Mathematics last month; it arrived in our library and I saw it sitting there, and I looked at it and it was just wonderful for me because it was in $T_{E} X$ and it looked gorgeous! This to me was the . . . you know, it was so ... I mean, I almost felt like I had helped to solve the Theorem myself!

결론부터 말씀드리자면,

- usepackage\{amsmath\}
- The TEXbook 18장 "Fine Points of Mathematics Typing"
- texdoc mathmode

And once you have gotten to that level, there's only a little bit more to learn before you are producing formulas as beautiful as any the world has ever seen; tastefully applied touches of $T_{E} X$ nique will add a professional polish that works wonders for the appearance and readability of the books and papers that you type.

$$
a, b, c, d, e, \text { and } f
$$

\$a, b, c, d, e, \textrm\{and \} f\$
\$a\$, \$b\$, \$c\$, \$d\$, \$e\$, and \$f\$

수식에서 줄바꿈은 $=,<, \rightarrow,+,-, \times$ 와 같은 연산자 다음에서만.

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2}=(x+y)(x-y) \\
& f(x, y)=x^{2}-y^{2}=(x+y)(x-y)
\end{aligned}
$$

$$
\$ f(x, y)=\left\{x^{\wedge}-2-y^{\wedge} 2\right\}=\{(x+y)(x-y)\} \$
$$

\allowbreak

$$
\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

\$(x_1,···, x_m, \allowbreak y_1,···,y_n)\$

$$
\iint_{D} d x d y
$$

\int\int_D dxdy

$$
\iint_{D} d x d y
$$

\int\! \!
! \int_D dx
,dy
\iint_D dx
,dy

$$
\begin{aligned}
& \left(\frac{a^{2}}{b^{3}}\right)^{4} \\
& \$ \$ \backslash \operatorname{left}\left(\backslash f r a c\left\{a^{\wedge} 2\right\}\left\{b^{-}-3\right\} \backslash \text { right }\right) \sim 4 \$ \$
\end{aligned}
$$

$$
\left(\frac{a^{2}}{b^{3}}\right)^{4}
$$

\$\$\left(\frac\{a^2\}\{b^3\}\right) $\{\backslash!\backslash!4\} \$ \$$

, thin space (normally $1 / 6$ of a quad);
\> medium space (normally $2 / 9$ of a quad);
\; thick space (normally $5 / 18$ of a quad);
\! negative thin space (normally $-1 / 6$ of a quad).

$$
\begin{array}{ll}
\$ \backslash i n t _0-\backslash i n f t y ~ & \mathrm{f}(\mathrm{x}) \backslash, \mathrm{dx} \$ \\
\hline \mathbf{y} \backslash, \mathrm{dx}-\mathrm{x} \backslash, \mathrm{dy} \$ & \int_{0}^{\infty} f(x) d x \\
\$ \mathrm{dx} \backslash, \mathrm{dy}=\mathrm{r} \backslash, \mathrm{dr} \backslash, \mathrm{~d} \backslash \text { theta } \$ & y d x-x d y \\
\$ \mathrm{x} \backslash, \mathrm{dy} / \mathrm{dx} \$ & \\
\$(2 \mathrm{n})!/ \backslash \mathrm{bigl}(\mathrm{n}!\backslash,(\mathrm{n}+1)!\backslash \mathrm{bigr}) \$ & (2 n)!/(n!(n+1)!) \\
\$ \backslash\{1,2, \backslash \text { ldots }, \mathrm{n} \backslash\} \$ & \{1,2, \ldots, n\} \\
\$ \backslash\{\backslash, \mathrm{x} \backslash \text { mid } \mathrm{x}>5 \backslash, \backslash\} \$ & \{x \mid x>5\}
\end{array}
$$

\$\sqrt2
, x \$
\$\sqrt\{\,\log x\}\$
\$0\bigl(1/\sqrt $n \backslash, \backslash$ bigr $) \$$ $\$[\backslash, 0,1) \$$ $\$ \backslash \log \mathrm{n} \backslash,(\backslash \log \backslash \log \mathrm{n}) \sim 2 \$ \quad \log n(\log \log n)^{2}$ $\$ \mathrm{x}^{\wedge} 2 \backslash!/ 2 \$$
\$n/\! \log n\$
\$\Gamma_\{\!2\}+\Delta^\{\!2\}\$
\$R_i\{\}^j\{\}_\{\!kl\}\$
$\sqrt{2} x$
$\sqrt{\log x}$
$O(1 / \sqrt{n})$
$[0,1)$
$x^{2} / 2$
$n / \log n$
$\Gamma_{2}+\Delta^{2} \quad \Gamma_{2}+\Delta^{2}$
$R_{i}{ }^{j}{ }_{k l} \quad R_{\imath}{ }^{j}{ }_{k l}$
$-\backslash \operatorname{cdots}(\cdots)+,-, \times,=, \leq, \subset$ 사이에서.

- ··· (...) 콤마(,) 사이나 기호가 없을 때.
\$x_1+\cdots+x_n\$

$$
x_{1}+\cdots+x_{n}
$$

$$
\$ \mathrm{x} _1=\backslash c \text { dots }=\mathrm{x} _\mathrm{n}=0 \$
$$

$$
x_{1}=\cdots=x_{n}=0
$$

\$A_1 \times $\backslash c d o t s \backslash t i m e s ~ A _n \$ ~ \quad A_{1} \times \cdots \times A_{n}$
\$f(x_1,···, $\left.x_{-} n\right)$ \$
$f\left(x_{1}, \ldots, x_{n}\right)$
\$x_1x_2··· x_n\$
$x_{1} x_{2} \ldots x_{n}$
$\$(1-x)\left(1-x^{\wedge} 2\right) \backslash \operatorname{ldots}\left(1-x^{\wedge} n\right) \$$
$(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{n}\right)$

감사합니다.

