Drawing a surface in \mathbb{L}^{3}

Young Wook Kim

Nov., 2004

This paper is to introduce a known method of drawing minimal surfaces in \mathbb{E}^{3} and show how to use it to find and draw a family of maximal surfaces in the Minkowski space \mathbb{L}^{3}.

Our question to begin with was "Is there a spacelike maximal surface in \mathbb{L}^{3} similar to the Costa-Hoffman-Meeks surfaces?" $[1]$

1 Maximal surfaces in \mathbb{E}^{3}

Minkowski space-time \mathbb{L}^{3} is $\mathbb{R}^{3}=\{(x, y, t)\}$ with pseudo-riemannian metric $d x^{2}+d y^{2}-d t^{2}$. Let M be a Riemann surface, and $f, g: M \rightarrow \mathbb{C}$ be analytic functions. Then, the Weierstrass-type formula

$$
\operatorname{Re}\left\{\int_{z_{0}}^{z}\left(\left(1+g(w)^{2}\right) f(w), \boldsymbol{i}\left(1-g(w)^{2}\right) f(w), 2 g(w) f(w)\right) d w\right\}
$$

defines a space-like maximal immersion into \mathbb{L}^{3}.
The table in the following page is a list of maximal surfaces in \mathbb{L}^{3}.

2 The process of finding a surface

3 Domain of parametrization

4 The Weierstrass data

Data of Costa-Hoffman-Meeks minimal surfaces in \mathbb{E}^{3} is

$$
w^{k+1}=z^{k}\left(z^{2}-1\right), \quad \eta=\left(\frac{z}{w}\right)^{k} d z, \quad g=\frac{\rho}{w} .
$$

Surfaces	Riemann Surface \boldsymbol{M}	$\boldsymbol{f} \boldsymbol{d z}$	\boldsymbol{g}
catenoid	$\mathbb{S}^{2} \backslash\{0, \infty\}$	$\frac{1}{z^{2}} d z$	z
helicoid	$\mathbb{S}^{2} \backslash\{0, \infty\}$	$\frac{i}{z^{2}} d z$	z
Enneper's surface	\mathbb{C}	$d z$	z
Trinoid	$\mathbb{S}^{2} \backslash\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\}$	$\frac{1}{\left(z^{3}-1\right)^{2}} d z$	z^{2}
Costa's surface	$?$	$?$	$?$

Table 1: A table

Literal conversion of this data into the maximal surface does not give a closed surface. And we have to modify it hoping for a data that works. The data we found for our maximal surfaces in \mathbb{L}^{3} is:

$$
w^{k+1}=z^{k}\left(z^{2}-1\right), \quad \eta=\frac{1}{z}\left(\frac{z}{w}\right)^{k} d z, \quad g=\rho \frac{z}{w}
$$

5 The period problem

For the periods of other components we have
Lemma 1. The period around γ for the $x y$-components are 0 iff

$$
\sigma=\sqrt{\frac{1}{2} \frac{A}{B}}
$$

where

$$
A=\int_{0}^{1} \frac{d t}{\sqrt[k+1]{t^{k}\left(1-t^{2}\right)}}, \quad B=\int_{0}^{1} \frac{\sqrt[k+1]{t^{k}\left(1-t^{2}\right)} d t}{1-t^{2}}
$$

6 Symmetries of the surface

7 The Surface

We render the surface graphics using a 3D plotting function in Mathematica and here is the surface:

Figure 1: A figure

8 Geometric properties of the surface

The metric of the surface is

$$
d s^{2}=\left(1-|g|^{2}\right)^{2}|\eta|^{2},
$$

and the singularities occur at the points where $|g|=1$.
In polar coordinates for $\alpha=r e^{i \theta}$, the singularity set is given by the equation

$$
r^{2}+r^{-2}=\sigma^{-2(k+1)}+2 \cos 2 \theta .
$$

9 Final remarks

This gives a new surface which is in close relation with the Costa-HoffmanMeeks minimal surface.

References

[1] Hoffman, D. and W. H. Meeks, III, Embedded minimal surfaces of finite topology, Ann. of Math. 131 (1990), 1-34.

