Drawing a surface in \mathbb{L}^3

Young Wook Kim

Nov., 2004

This paper is to introduce a known method of drawing minimal surfaces in \mathbb{E}^3 and show how to use it to find and draw a family of maximal surfaces in the Minkowski space \mathbb{L}^3 .

Our question to begin with was "Is there a spacelike maximal surface in \mathbb{L}^3 similar to the Costa-Hoffman-Meeks surfaces?" [1]

1 Maximal surfaces in \mathbb{E}^3

Minkowski space-time \mathbb{L}^3 is $\mathbb{R}^3 = \{(x, y, t)\}$ with pseudo-riemannian metric $dx^2 + dy^2 - dt^2$. Let M be a Riemann surface, and $f, g: M \to \mathbb{C}$ be analytic functions. Then, the Weierstrass-type formula

$$Re\left\{\int_{z_0}^{z} \left((1+g(w)^2)f(w), i(1-g(w)^2)f(w), 2g(w)f(w)\right)dw\right\}$$

defines a space-like maximal immersion into \mathbb{L}^3 .

The table in the following page is a list of maximal surfaces in \mathbb{L}^3 .

- 2 The process of finding a surface
- 3 Domain of parametrization
- 4 The Weierstrass data

Data of Costa-Hoffman-Meeks minimal surfaces in \mathbb{E}^3 is

$$w^{k+1} = z^k(z^2 - 1), \quad \eta = \left(\frac{z}{w}\right)^k dz, \quad g = \frac{\rho}{w}.$$

Surfaces	Riemann Surface M	fdz	g
catenoid	$\mathbb{S}^2 \smallsetminus \{0, \infty\}$	$\frac{1}{z^2} dz$	z
helicoid	$\mathbb{S}^2 \setminus \{0, \infty\}$	$\frac{i}{z^2} dz$	z
Enneper's surface	\mathbb{C}	dz	z
Trinoid	$\mathbb{S}^2 \setminus \{1, e^{2\pi i/3}, e^{4\pi i/3}\}$	$\frac{1}{(z^3-1)^2} dz$	z^2
Costa's surface	?	?	?

Table 1: A table

Literal conversion of this data into the maximal surface does not give a closed surface. And we have to modify it hoping for a data that works. The data we found for our maximal surfaces in \mathbb{L}^3 is:

$$w^{k+1} = z^k(z^2 - 1), \quad \eta = \frac{1}{z} \left(\frac{z}{w}\right)^k dz, \quad g = \rho \frac{z}{w}$$

5 The period problem

For the periods of other components we have

Lemma 1. The period around γ for the xy-components are 0 iff

$$\sigma = \sqrt{\frac{1}{2} \frac{A}{B}},$$

where

$$A = \int_0^1 \frac{dt}{\sqrt[k+1]{t^k(1-t^2)}}, \quad B = \int_0^1 \frac{\sqrt[k+1]{t^k(1-t^2)}dt}{1-t^2}.$$

6 Symmetries of the surface

7 The Surface

We render the surface graphics using a 3D plotting function in Mathematica and here is the surface:

Figure 1: A figure

8 Geometric properties of the surface

The metric of the surface is

$$ds^2 = (1 - |g|^2)^2 |\eta|^2,$$

and the singularities occur at the points where |g| = 1.

In polar coordinates for $\alpha = r e^{i\theta}$, the singularity set is given by the equation

$$r^2 + r^{-2} = \sigma^{-2(k+1)} + 2\cos 2\theta.$$

9 Final remarks

This gives a new surface which is in close relation with the Costa-Hoffman-Meeks minimal surface.

References

[1] Hoffman, D. and W. H. Meeks, III, Embedded minimal surfaces of finite topology, *Ann. of Math.* **131** (1990), 1–34.