
1

HAM

1. Hamiltonian circuits. This program finds all Hamiltonian circuits of an
undirected graph, using conventions of the Stanford GraphBase.

If the user says, for example, ‘ham foo.gb’, the standard output will list every
Hamiltonian circuit of the graph foo, which should be represented in file foo.gb using
the Stanford GraphBase’s portable ASCII format. The total number of solutions is
reported at the end of the output.

An optional second parameter specifies an interval between outputs, so that the
list contains only a sample of the solutions. For example, ‘ham foo.gb 1000’ will list
only one of every 1000 Hamiltonian circuits. If the second parameter is zero, only the
total number of circuits will be output.
#include <stdio.h> /∗ standard C input/output functions ∗/
#include "gb_graph.h" /∗ the GraphBase data structures ∗/
#include "gb_save.h" /∗ the restore graph routine ∗/

2. We use a utility field deg to record vertex degrees.
#define deg u.I /∗ the current number of arcs to and from this vertex ∗/
int main (int argc , char ∗argv [])

{
Graph ∗g; /∗ the user’s graph ∗/
register Vertex ∗t, ∗u, ∗v; /∗ key vertices ∗/
Vertex ∗x, ∗y, ∗z; /∗ vertices used less often ∗/
register Arc ∗a, ∗aa ; /∗ arcs used often ∗/
Arc ∗b, ∗bb ; /∗ arcs used less often ∗/
int count = 0; /∗ solutioons found so far ∗/
int interval = 1; /∗ the reporting interval ∗/
⟨Scan the command line arguments and input g 3 ⟩;
⟨Prepare g for backtracking, and find a vertex x of minimum degree 4 ⟩;
⟨Abort the run if g is malformed or x⃗ deg < 2 5 ⟩;
for (b = x⃗ arcs ; b⃗ next ; b = b⃗ next)

for (bb = b⃗ next ; bb ; bb = bb⃗ next) {
v = b⃗ tip ;
z = bb⃗ tip ;
⟨Find all simple paths of length g⃗ n − 2 from v to z, avoiding x 7 ⟩;

}
printf ("Altogether␣%d␣solutions.\n", count);
return 0; /∗ normal exit ∗/

}

3. ⟨Scan the command line arguments and input g 3 ⟩ ≡
if (argc > 2 ∧ sscanf (argv [2], "%d", &interval) ≡ 1) {

argc−−;
if (interval < 0) interval = −interval ;
else if (interval ≡ 0) interval = −10000;

/∗ suppress output when 0 is specified ∗/
}
if (argc ̸= 2) {

2 HAM: HAMILTONIAN CIRCUITS

printf ("Usage:␣%s␣foo.gb␣[interval]\n", argv [0]);
return −1;

}
g = restore graph (argv [1]);

This code is used in section 2.

4. Vertices that have already appeared in the path are said to be “taken,” and their
taken field is nonzero. Initially we make all those fields zero.
#define taken v.I /∗ does this vertex appear in the current path? ∗/
#define not taken (vert) ((vert)⃗ taken ≡ 0)

⟨Prepare g for backtracking, and find a vertex x of minimum degree 4 ⟩ ≡
if (g) { int dmin = g⃗ n;

for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++) {
register int d = 0; /∗ the degree of v ∗/
v⃗ taken = 0;
for (a = v⃗ arcs ; a; a = a⃗ next) d++;
v⃗ deg = d;
if (d < dmin) dmin = d, x = v;

}
}

This code is used in section 2.

5. A vertex with fewer than two neighbors cannot be part of a Hamiltonian circuit,
so we give such cases short shrift.
⟨Abort the run if g is malformed or x⃗ deg < 2 5 ⟩ ≡

if (¬g) {
printf ("Graph␣%s␣is␣malformed␣(error␣code␣%ld)!\n", argv [1], panic code);
return −2;

}
if (x⃗ deg < 2) {

printf ("No␣solutions␣(vertex␣%s␣has␣degree␣%ld).\n", x⃗ name , x⃗ deg);
return −3;

}
This code is used in section 2.

Arc = struct arc struct,
GB GRAPH §10.

arcs : static Arc ∗,
GB SAVE §8.

deg = u.I, ham §2.
Graph = struct

graph struct,
GB GRAPH §20.

I: long, GB GRAPH §8.
n: long, GB SAVE §31.

name : char ∗, GB GRAPH §9.
next : struct area pointers

∗, GB GRAPH §12.
panic code : long,

GB GRAPH §5.
printf : int (), <stdio.h>.
restore graph : Graph ∗(),

GB SAVE §4.
sscanf : int (), <stdio.h>.
tip : struct vertex struct ∗,

GB GRAPH §10.
u: util, GB GRAPH §9.
v: register Vertex ∗, ham §2.
v: util, GB GRAPH §9.
Vertex = struct

vertex struct,
GB GRAPH §9.

vertices : Vertex ∗,
GB GRAPH §20.

HAM: THE ALGORITHM 3

6. The algorithm. Unproductive branches of the search tree are cut off by using
a simple rule: If one of the vertices we could move to next is adjacent to only one
other unused vertex, we must move to it now.

The moves will be recorded in the vertex array of g. More precisely, the kth vertex
of the path will be t⃗ vert when t is the kth vertex of the graph. If the move was
not forced, t⃗ ark will point to the Arc record representing the arc from t⃗ vert to
(t + 1)⃗ vert ; otherwise t⃗ ark will be Λ.
#define vert w.V /∗ vertex on current path ∗/
#define ark x.A /∗ arc to its current successor ∗/

7. This program is a typical application of the backtrack method; in other words,
it essentially does a depth-first search in the tree of all solutions. The author, being
a member of the Old School, is most comfortable writing such programs with labels
and goto statements, rather than with while loops. Perhaps some day he will learn
his lesson; but backtrack programs do need to be streamlined for speed.

A complication arises because we may discover that a move is unproductive before
we have completely updated the data structures recording that move.
⟨Find all simple paths of length g⃗ n − 2 from v to z, avoiding x 7 ⟩ ≡

{ Vertex ∗tmax ; /∗ the deepest level ∗/
t = g⃗ vertices ; tmax = t + g⃗ n − 1; /∗ t represents the current level ∗/
x⃗ taken = 1; t⃗ vert = x; t⃗ ark = Λ;

advance :
⟨ Increase t, updating the data structures to show that vertex v is now taken, and set y

to a forced move, if any; but goto backtrack if no further moves are possible 8 ⟩;
if (y) { /∗ move is forced ∗/

t⃗ ark = Λ; v = y; goto advance ;
}
a = v⃗ arcs ;

search : ⟨Look at arc a and its successors, advancing if a valid move is found 10 ⟩;
restore : aa = Λ;
restore to aa : ⟨Downdate the data structures to the state they were in when level t was

entered, stopping at arc aa 9 ⟩;
backtrack : ⟨Decrease t, if possible, and search for another possibility 11 ⟩;
}

This code is used in section 2.

8. When a vertex becomes taken, we pretend that it has been removed from the
graph.
⟨ Increase t, updating the data structures to show that vertex v is now taken, and set y to a

forced move, if any; but goto backtrack if no further moves are possible 8 ⟩ ≡
t++;
t⃗ vert = v;
v⃗ taken = 1;
if (v ≡ z) {

if (t ≡ tmax) ⟨Record a solution 12 ⟩;
goto backtrack ;

}

4 HAM: THE ALGORITHM

for (aa = v⃗ arcs , y = Λ; aa ; aa = aa⃗ next) { register int d;

u = aa⃗ tip ;
d = u⃗ deg − 1;
if (d ≡ 1 ∧ not taken (u)) { /∗ we must move next to u ∗/

if (y) goto restore to aa ; /∗ two forced moves can’t both be made ∗/
y = u;

}
u⃗ deg = d; /∗ u can no longer move to v ∗/

}
This code is used in section 7.

9. We didn’t change the graph drastically at level t; all we did was decrease the
degrees of vertices reachable from t⃗ vert . Therefore we can easily undo previous
changes when we are backing up.
⟨Downdate the data structures to the state they were in when level t was entered, stopping

at arc aa 9 ⟩ ≡
for (a = t⃗ vert⃗ arcs ; a ̸= aa ; a = a⃗ next) a⃗ tip⃗ deg ++;

This code is used in section 7.

10. ⟨Look at arc a and its successors, advancing if a valid move is found 10 ⟩ ≡
while (a) {

v = a⃗ tip ;
if (not taken (v)) {

t⃗ ark = a;
goto advance ; /∗ move to v ∗/

}
a = a⃗ next ;

}
This code is used in section 7.

11. ⟨Decrease t, if possible, and search for another possibility 11 ⟩ ≡
t⃗ vert⃗ taken = 0;
t−−;
if (t⃗ ark) {

a = t⃗ ark⃗next ;
goto search ;

}
if (t ̸= g⃗ vertices) goto restore ; /∗ the move was forced, so we bypass search ∗/

This code is used in section 7.

a: register Arc ∗, §2.
A: struct arc struct ∗,

GB GRAPH §8.
aa : register Arc ∗, §2.
Arc = struct arc struct,

GB GRAPH §10.
arcs : static Arc ∗,

GB SAVE §8.
ark = x.A, ham §6.
deg = u.I, ham §2.
g: Graph ∗, §2.
n: long, GB SAVE §31.

next : struct area pointers
∗, GB GRAPH §12.

not taken =macro (), §4.
t: register Vertex ∗, §2.
taken = v.I, ham §4.
tip : struct vertex struct ∗,

GB GRAPH §10.
u: register Vertex ∗, §2.
v: register Vertex ∗, §2.
V : struct vertex struct ∗,

GB GRAPH §8.

vert = w.V , ham §6.
Vertex = struct

vertex struct,
GB GRAPH §9.

vertices : Vertex ∗,
GB GRAPH §20.

w: util, GB GRAPH §9.
x: Vertex ∗, §2.
x: util, GB GRAPH §9.
y: Vertex ∗, §2.
z: Vertex ∗, §2.

HAM: THE ALGORITHM 5

12. We print a solution by simply listing the vertex names in the current path.
⟨Record a solution 12 ⟩ ≡

{
count ++;
if (count % interval ≡ 0 ∧ interval > 0) {

printf ("%d:␣", count);
for (u = g⃗ vertices ; u ≤ tmax ; u++) printf ("%s␣", u⃗ vert⃗ name);
printf ("\n");

}
}

This code is used in section 8.

6 HAM: INDEX

13. Index.

count : int, §2.
g: Graph ∗, §2.
interval : int, §2.
name : char ∗, GB GRAPH §9.

printf : int (), <stdio.h>.
tmax : Vertex ∗, §7.
u: register Vertex ∗, §2.

vert = w.V , ham §6.
vertices : Vertex ∗,

GB GRAPH §20.

