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1. Introduction. The tower of Hanoi (commonly also known as the ”towers of Hanoi”), is a puzzle
invented by E. Lucas in 1883. Given a stack of disks arranged from largest on the bottom to smallest on top
placed on a rod, together with two empty rods, the towers of Hanoi puzzle asks for the minimum number
of moves required to move the stack from one rod to another, where moves are allowed only if they place
smaller disks on top of larger disks. The puzzle with n = 4 pegs and n disks is sometimes known as Reve’s
puzzle.

The problem is isomorphic to finding a Hamiltonian path on an n-hypercube (Gardner 1957, 1959).
Given three rods and n disks, the sequence S1 = {ak} giving the number of the disk (i = 1 to n) to

be moved at the kth step is given by the remarkably simple recursive procedure of starting with the list
S1 = {1} for a single disk, and recursively computing

Sn = {Sn−1, n, Sn−1}

For the first few values of n, this gives the sequences shown in the following table. A solution of the three-rod
four-disk problem is illustrated above.

n Sn

1 1
2 1, 2, 1
3 1, 2, 1, 3, 1, 2, 1
4 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1

As the number of disks is increases (again for three rods), an infinite sequence is obtained, the first few
terms of which are illustrated in the table above (Sloane’s A001511). Amazingly, this is exactly the binary
carry sequence plus one. Even more amazingly, the number of disks moved after the kth step is the same
as the element which needs to be added or deleted in the kth addend of the Ryser formula (Gardner 1988,
Vardi 1991).

As a result of the above procedure, the number of moves hn required to solve the puzzle of n disks on
three rods is given by the recurrence relation

hn = 2hn−1 + 1

with h1 = 1. Solving gives

hn = 2n − 1

i.e., the Mersenne numbers.
For three rods, the proof that the above solution is minimal can be achieved using the Lucas correspondence

which relates Pascal’s triangle to the Hanoi graph. While algorithms are known for transferring disks on
four rods, none has been proved minimal.

A Hanoi graph can be constructed whose graph vertices correspond to legal configurations of towers of
Hanoi, where the graph vertices are adjacent if the corresponding configurations can be obtained by a legal
move. The puzzle itself can be solved using a binary Gray code.

Poole (1994) and Rangel-Mondragn give Mathematica routines for solving the Hanoi towers problem.
Poole’s algorithm works for an arbitrary disk configuration, and provides the solution in the fewest possible
moves.

The minimal numbers of moves required to order n = 1, 2, . . . disk on four rods are given by 1, 3, 5, 9, 13,
17, 25, 33, . . . (Sloane’s A007664). It is conjectured that this sequence is given by the recurrence

sn = sn−1 + 2x
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with s1 = 1 and x the positive floor integer solution to

n − 1 =
1
2
x(x + 1),

i.e.,

x =
⌊√

8n − 7 − 1
2

⌋
.

This would then give the explicit formula

sn = 1 +
[
n − 1

2
x(x − 1) − 1

]
2x.

This program solves the problem of Hanoi Tower in non-recursive version. Here is the overall layout of this
C program:
#include <stdio.h>

#include <stdlib.h>

〈Type declarations 2 〉
〈Global variables 3 〉
〈Functions 4 〉
main (argc , argv )

int argc ; /∗ the number of command-line arguments ∗/
char ∗argv [ ]; /∗ an array of strings containing those arguments ∗/

{
if (argc 6= 2) {

printf ("TowerÃofÃHanoiÃprogram.ÃNon−recursiveÃversion.\n");
printf ("\tThereÃisÃthreeÃrods.(A,ÃB,ÃandÃC).");
printf ("ÃMoveÃtheÃstackÃfromÃAÃtoÃC.\n");
printf ("Usage:ÃhanoiÃ<numberÃofÃdisks>\n");
return 0;

}
hanoi (atoi (argv [1]), ’A’, ’B’, ’C’);
return 0;

}
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2. Stack. The stack is implemented by linked list.
〈Type declarations 2 〉 ≡

struct node {
void ∗element ;
struct node ∗next ;

};
See also section 8.

This code is used in section 1.

3.

〈Global variables 3 〉 ≡
struct node ∗head = Λ;

This code is used in section 1.

4. Alloc a node for stack.
〈Functions 4 〉 ≡

static struct node ∗talloc( )
{

return (struct node ∗) malloc(sizeof (struct node));
}

See also sections 5, 6, 7, 9, and 10.

This code is used in section 1.

5. Initialize and deallocate a stack.
〈Functions 4 〉 +≡

void init stack ( )
{

if (¬head ) {
head = talloc( );
head~next = Λ;

}
}
void free stack ( )
{

struct node ∗p;
while (head ) {

p = head ;
head = p~next ;
free (p);

}
}
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6. Push and pop operation
〈Functions 4 〉 +≡

void push (t)
void ∗t;

{
struct node ∗p;
p = talloc( );
p~element = t;
p~next = head~next ;
head~next = p;

}
void ∗pop( )
{

void ∗value ;
struct node ∗p;
if (¬stackempty ( )) {

p = head~next ;
head~next = p~next ;
value = p~element ;
free (p);
return value ;

}
else {

return Λ;
}

}

7.

〈Functions 4 〉 +≡
int stackempty ( )
{

return head~next ≡ Λ;
}
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8. Hanoi Tower.

〈Type declarations 2 〉 +≡
struct disk {

int n, no ;
char from , via , to ;

};

9. Make a disk.
〈Functions 4 〉 +≡

struct disk ∗disk (no , n, from , via , to)
int n, no ;
char from , via , to ;

{
struct disk ∗p;
p = (struct disk ∗) malloc(sizeof (struct disk));
p~no = no ;
p~n = n;
p~ from = from ;
p~via = via ;
p~to = to ;
return p;

}

10. The main routine to solve the problem using stack.
〈Functions 4 〉 +≡

void hanoi (n, from , via , to)
int n; /∗ the number of disks ∗/
char from , via , to ; /∗ rods ∗/

{
struct disk ∗p;
init stack ( );
push (disk (n, n, from , via , to));
while (¬stackempty ( )) {

p = (struct disk ∗) pop( );
if (p~n > 1)
〈Push the processes in reverse order 11 〉

else
printf ("MoveÃdiscÃ%d:Ã%cÃ==>Ã%c\n", p~no , p~ from , p~ to);

free (p);
}
free stack ( );

}

11.

〈Push the processes in reverse order 11 〉 ≡
{

push (disk (p~no − 1, p~n − 1, p~via , p~ from , p~ to));
push (disk (p~no , 1, p~ from , p~via , p~to));
push (disk (p~no − 1, p~n − 1, p~ from , p~ to , p~via ));

}
This code is used in section 10.
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12. Index.

disk: 8, 9, 10.
node: 2, 3, 4, 5, 6.

argc : 1.
argv : 1.
atoi : 1.
disk : 9, 10, 11.
element : 2, 6.
free : 5, 6, 10.
free stack : 5, 10.
from : 8, 9, 10, 11.
hanoi : 1, 10.
head : 3, 5, 6, 7.
init stack : 5, 10.
main : 1.
malloc : 4, 9.
n: 8, 9, 10.
next : 2, 5, 6, 7.
no : 8, 9, 10, 11.
p: 5, 6, 9, 10.
pop : 6, 10.
printf : 1, 10.
push : 6, 10, 11.
stackempty : 6, 7, 10.
t: 6.
talloc : 4, 5, 6.
to : 8, 9, 10, 11.
value : 6.
via : 8, 9, 10, 11.
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〈Functions 4, 5, 6, 7, 9, 10 〉 Used in section 1.

〈Global variables 3 〉 Used in section 1.

〈Push the processes in reverse order 11 〉 Used in section 10.

〈Type declarations 2, 8 〉 Used in section 1.



HANOI

Section Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Hanoi Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6


