
April 29, 2006 wc.nw 1

1 An example of noweb

The following short program illustrates the use of noweb, a low-tech tool for
literate programming. The purpose of the program is to provide a basis for
comparing WEB and noweb, so I have used a program that has been published
before; the text, code, and presentation are taken from [2, Chapter 12]. The
notable differences are:

• When displaying source code, noweb uses different typography. In par-
ticular, WEB makes good use of multiple fonts and the ablity to typeset
mathematics, and it may use mathematical symbols in place of C symbols
(e.g. “∧” for “&&”). noweb uses a single fixed-width font for code.

• noweb can work with LATEX, and I have used LATEX in this example.

• noweb has no numbered “sections.” When numbers are needed for cross-
referencing, noweb uses page numbers. If two or more chunks appear on a
page, for example, page 24, they are distinguished by appending a letter
to the page number, for example, 24a or 24b.

• noweb has no special support for macros. In the sample program, I have
used the chunk “〈Definitions ??〉” to hold macro definitions.

• noweb does not recognize C identifier definitions automatically, so I had
to add a list of defined identifiers to each code chunk. Because noweb is
language-independent, it must use a heuristic to find uses of identifiers.
This heuristic can be fooled into finding false “uses” in comments or string
literals, such as the use of status in chunk ??.

• The CWEB version of this program has semicolons following most uses of
〈· · ·〉. WEB needs the semicolon or its equivalent to make its prettyprinting
come out right. Because it does not attempt prettyprinting, noweb needs
no semicolons.

• Both WEB and noweb write chunk cross-reference information in footnote

font below each code chunk, for example, “” Unlike WEB, noweb also
includes cross-reference information for identifiers, for example, “Defines

file count, used in chunks 4a, 5a, and 7.” This information is generated using
the @ %def markings in the noweb source.

1.1 Counting words

This example, based on a program by Klaus Guntermann and Joachim Schrod [1]
and a program by Silvio Levy and D. E. Knuth [2, Chapter 12], presents the
“word count” program from Unix, rewritten in noweb to demonstrate literate
programming using noweb. The level of detail in this document is intentionally

April 29, 2006 wc.nw 2

high, for didactic purposes; many of the things spelled out here don’t need to
be explained in other programs.

The purpose of wc is to count lines, words, and/or characters in a list of files.
The number of lines in a file is the number of newline characters it contains.
The number of characters is the file length in bytes. A “word” is a maximal
sequence of consecutive characters other than newline, space, or tab, containing
at least one visible ASCII code. (We assume that the standard ASCII code is
in use.)

Most literate C programs share a common structure. It’s probably a good
idea to state the overall structure explicitly at the outset, even though the
various parts could all be introduced in chunks named 〈* 〉 if we wanted to add
them piecemeal.

Here, then, is an overview of the file wc.c that is defined by the noweb
program wc.nw:

2a 〈* 2a〉≡
〈Header files to include 2b〉
〈Definitions 2c〉
〈Global variables 3a〉
〈Functions 8b〉
〈The main program 3b〉
We must include the standard I/O definitions, since we want to send for-

matted output to stdout and stderr.
2b 〈Header files to include 2b〉≡ (2a)

#include <stdio.h>

The status variable will tell the operating system if the run was successful
or not, and prog name is used in case there’s an error message to be printed.

2c 〈Definitions 2c〉≡ (2a) 4d .

#define OK 0
/* status code for successful run */

#define usage_error 1
/* status code for improper syntax */

#define cannot_open_file 2
/* status code for file access error */

Defines:
cannot open file, used in chunk 5a.
OK, used in chunk 3a.
usage error, used in chunk 8b.

Uses status 3a.

April 29, 2006 wc.nw 3

3a 〈Global variables 3a〉≡ (2a) 6b .

int status = OK;
/* exit status of command, initially OK */

char *prog_name;
/* who we are */

Defines:
prog name, used in chunks 3b, 5a, and 8b.
status, used in chunks 2c, 3b, 5a, and 8b.

Uses OK 2c.

Now we come to the general layout of the main function.
3b 〈The main program 3b〉≡ (2a)

main(argc, argv)
int argc;
/* number of arguments on UNIX command line */

char **argv;
/* the arguments, an array of strings */

{
〈Variables local to main 3c〉
prog_name = argv[0];
〈Set up option selection 4a〉
〈Process all the files 4b〉
〈Print the grand totals if there were multiple files 7d〉
exit(status);

}
Defines:

argc, never used.
argv, never used.

Uses prog name 3a and status 3a.

If the first argument begins with a ‘-’, the user is choosing the desired counts
and specifying the order in which they should be displayed. Each selection is
given by the initial character (lines, words, or characters). For example, ‘-cl’
would cause just the number of characters and the number of lines to be printed,
in that order.

We do not process this string now; we simply remember where it is. It will
be used to control the formatting at output time.

3c 〈Variables local to main 3c〉≡ (3b) 4c .

int file_count;
/* how many files there are */

char *which;
/* which counts to print */

Defines:
file count, used in chunks 4a, 5a, and 7.
which, used in chunks 4a, 7, and 8b.

April 29, 2006 wc.nw 4

4a 〈Set up option selection 4a〉≡ (3b)

which = "lwc";
/* if no option is given, print 3 values */

if (argc > 1 && *argv[1] == ’-’) {
which = argv[1] + 1;
argc--;
argv++;

}
file_count = argc - 1;

Uses file count 3c and which 3c.

Now we scan the remaining arguments and try to open a file, if possible.
The file is processed and its statistics are given. We use a do ... while loop
because we should read from the standard input if no file name is given.

4b 〈Process all the files 4b〉≡ (3b)

argc--;
do {

〈If a file is given, try to open *(++argv); continue if unsuccessful 5a〉
〈Initialize pointers and counters 6a〉
〈Scan file 6c〉
〈Write statistics for file 7b〉
〈Close file 5b〉
〈Update grand totals 7c〉
/* even if there is only one file */

} while (--argc > 0);

Here’s the code to open the file. A special trick allows us to handle input
from stdin when no name is given. Recall that the file descriptor to stdin is 0;
that’s what we use as the default initial value.

4c 〈Variables local to main 3c〉+≡ (3b) / 3c 5d .

int fd = 0;
/* file descriptor, initialized to stdin */

Defines:
fd, never used.

4d 〈Definitions 2c〉+≡ (2a) / 2c 5c .

#define READ_ONLY 0
/* read access code for system open */

Defines:
READ ONLY, used in chunk 5a.

April 29, 2006 wc.nw 5

5a 〈If a file is given, try to open *(++argv); continue if unsuccessful 5a〉≡ (4b)

if (file_count > 0
&& (fd = open(*(++argv), READ_ONLY)) < 0) {
fprintf(stderr,
"%s: cannot open file %s\n",
prog_name, *argv);

status |= cannot_open_file;
file_count--;
continue;

}
Uses cannot open file 2c, file count 3c, prog name 3a, READ ONLY 4d, and status 3a.

5b 〈Close file 5b〉≡ (4b)

close(fd);

We will do some homemade buffering in order to speed things up: Characters
will be read into the buffer array before we process them. To do this we set
up appropriate pointers and counters.

5c 〈Definitions 2c〉+≡ (2a) / 4d 8a .

#define buf_size BUFSIZ
/* stdio.h BUFSIZ chosen for efficiency */

Defines:
buf size, used in chunks 5d and 7a.

5d 〈Variables local to main 3c〉+≡ (3b) / 4c

char buffer[buf_size];
/* we read the input into this array */

register char *ptr;
/* first unprocessed character in buffer */

register char *buf_end;
/* the first unused position in buffer */

register int c;
/* current char, or # of chars just read */

int in_word;
/* are we within a word? */

long word_count, line_count, char_count;
/* # of words, lines, and chars so far */

Defines:
buf end, used in chunks 6a and 7a.
buffer, used in chunks 6a and 7a.
c, used in chunks 6c and 7a.
char count, used in chunks 6–8.
in word, used in chunk 6.
line count, used in chunks 6–8.
ptr, used in chunks 6 and 7a.
word count, used in chunks 6–8.

Uses buf size 5c.

April 29, 2006 wc.nw 6

6a 〈Initialize pointers and counters 6a〉≡ (4b)

ptr = buf_end = buffer;
line_count = word_count = char_count = 0;
in_word = 0;

Uses buf end 5d, buffer 5d, char count 5d, in word 5d, line count 5d, ptr 5d,
and word count 5d.

The grand totals must be initialized to zero at the beginning of the program.
If we made these variables local to main, we would have to do this initialization
explicitly; however, C’s globals are automatically zeroed. (Or rather, “statically
zeroed.”) (Get it?)

6b 〈Global variables 3a〉+≡ (2a) / 3a

long tot_word_count, tot_line_count,
tot_char_count;

/* total number of words, lines, chars */
Defines:

tot line count, used in chunk 7.
tot word count, used in chunk 7.

The present chunk, which does the counting that is wc’s raison d’être, was
actually one of the simplest to write. We look at each character and change
state if it begins or ends a word.

6c 〈Scan file 6c〉≡ (4b)

while (1) {
〈Fill buffer if it is empty; break at end of file 7a〉
c = *ptr++;
if (c > ’ ’ && c < 0177) {
/* visible ASCII codes */
if (!in_word) {

word_count++;
in_word = 1;

}
continue;

}
if (c == ’\n’) line_count++;
else if (c != ’ ’ && c != ’\t’) continue;
in_word = 0;
/* c is newline, space, or tab */

}
Uses c 5d, in word 5d, line count 5d, ptr 5d, and word count 5d.

April 29, 2006 wc.nw 7

Buffered I/O allows us to count the number of characters almost for free.
7a 〈Fill buffer if it is empty; break at end of file 7a〉≡ (6c)

if (ptr >= buf_end) {
ptr = buffer;
c = read(fd, ptr, buf_size);
if (c <= 0) break;
char_count += c;
buf_end = buffer + c;

}
Uses buf end 5d, buf size 5c, buffer 5d, c 5d, char count 5d, and ptr 5d.

It’s convenient to output the statistics by defining a new function wc print;
then the same function can be used for the totals. Additionally we must decide
here if we know the name of the file we have processed or if it was just stdin.

7b 〈Write statistics for file 7b〉≡ (4b)

wc_print(which, char_count, word_count,
line_count);

if (file_count)
printf(" %s\n", *argv); /* not stdin */

else
printf("\n"); /* stdin */

Defines:
wc print, used in chunks 7d and 8b.

Uses char count 5d, file count 3c, line count 5d, which 3c, and word count 5d.

7c 〈Update grand totals 7c〉≡ (4b)

tot_line_count += line_count;
tot_word_count += word_count;
tot_char_count += char_count;

Uses char count 5d, line count 5d, tot line count 6b, tot word count 6b,
and word count 5d.

We might as well improve a bit on Unix’s wc by displaying the number of
files too.

7d 〈Print the grand totals if there were multiple files 7d〉≡ (3b)

if (file_count > 1) {
wc_print(which, tot_char_count,

tot_word_count, tot_line_count);
printf(" total in %d files\n", file_count);

}
Uses file count 3c, tot line count 6b, tot word count 6b, wc print 7b, and which 3c.

April 29, 2006 wc.nw 8

Here now is the function that prints the values according to the specified
options. The calling routine is supposed to supply a newline. If an invalid option
character is found we inform the user about proper usage of the command.
Counts are printed in 8-digit fields so that they will line up in columns.

8a 〈Definitions 2c〉+≡ (2a) / 5c

#define print_count(n) printf("%8ld", n)
Defines:

print count, used in chunk 8b.

8b 〈Functions 8b〉≡ (2a)

wc_print(which, char_count, word_count, line_count)
char *which; /* which counts to print */
long char_count, word_count, line_count;
/* given totals */

{
while (*which)
switch (*which++) {
case ’l’: print_count(line_count);
break;

case ’w’: print_count(word_count);
break;

case ’c’: print_count(char_count);
break;

default:
if ((status & usage_error) == 0) {
fprintf(stderr,
"\nUsage: %s [-lwc] [filename ...]\n",
prog_name);

status |= usage_error;
}

}
}

Uses char count 5d, line count 5d, print count 8a, prog name 3a, status 3a,
usage error 2c, wc print 7b, which 3c, and word count 5d.

Incidentally, a test of this program against the system wc command on a
SPARCstation showed that the “official” wc was slightly slower. Furthermore,
although that wc gave an appropriate error message for the options ‘-abc’, it
made no complaints about the options ‘-labc’ ! Dare we suggest that the system
routine might have been better if its programmer had used a more literate
approach?

April 29, 2006 wc.nw 9

List of code chunks

This list is generated automatically. The numeral is that of the first definition
of the chunk.
〈* 2a〉
〈Close file 5b〉
〈Definitions 2c〉
〈Fill buffer if it is empty; break at end of file 7a〉
〈Functions 8b〉
〈Global variables 3a〉
〈Header files to include 2b〉
〈If a file is given, try to open *(++argv); continue if unsuccessful 5a〉
〈Initialize pointers and counters 6a〉
〈Print the grand totals if there were multiple files 7d〉
〈Process all the files 4b〉
〈Scan file 6c〉
〈Set up option selection 4a〉
〈The main program 3b〉
〈Update grand totals 7c〉
〈Variables local to main 3c〉
〈Write statistics for file 7b〉

Index

Here is a list of the identifiers used, and where they appear. Underlined
entries indicate the place of definition. This index is generated automatically.

argc: 3b
argv: 3b
buf end: 5d, 6a, 7a
buf size: 5c, 5d, 7a
buffer: 5d, 6a, 7a
c: 5d, 6c, 7a
cannot open file: 2c, 5a
char count: 5d, 6a, 7a, 7b, 7c, 8b
fd: 4c
file count: 3c, 4a, 5a, 7b, 7d
in word: 5d, 6a, 6c
line count: 5d, 6a, 6c, 7b, 7c, 8b
OK: 2c, 3a
print count: 8a, 8b
prog name: 3a, 3b, 5a, 8b
ptr: 5d, 6a, 6c, 7a
READ ONLY: 4d, 5a
status: 2c, 3a, 3b, 5a, 8b
tot line count: 6b, 7c, 7d

April 29, 2006 wc.nw 10

tot word count: 6b, 7c, 7d
usage error: 2c, 8b
wc print: 7b, 7d, 8b
which: 3c, 4a, 7b, 7d, 8b
word count: 5d, 6a, 6c, 7b, 7c, 8b

References

[1] Klaus Guntermann and Joachim Schrod. WEB adapted to C. TUGboat,
7(3):134–137, October 1986. 1.1

[2] Donald E. Knuth. Literate Programming, volume 27 of Center for the Study
of Language and Information Lecture Notes. Leland Stanford Junior Uni-
versity, Stanford, California, 1992. 1, 1.1

	An example of noweb
	Counting words

